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Abstract
Depletion forces in homogeneous and inhomogeneous binary colloidal mixtures
in two dimensions are accounted for by a theoretical approach based on a
contraction of the description of liquid mixtures, as well as by computer
simulations. We study the depletion interactions in concentrated binary
mixtures of additive and non-additive hard discs. The wall–particle depletion
potential for a disc close to a hard wall with a concave curvature, or with a
relief pattern, is obtained in the infinitely dilute limit, as well as the depletion
potentials in mixtures of hard discs and hard plates.

1. Introduction

Colloidal suspensions are present in many inorganic materials, such as paints, glues, inks,
etc, and in organic components, such as cells, bacteria, etc. They exhibit interesting transport
and structural properties and a great variety of thermodynamic phases, depending on the size,
shape and concentration of the constituents. The study of those properties requires a complete
understanding of the effective interactions between colloidal particles. Depletion forces are
a particular case of these kinds of interactions, which describe the phases of some colloidal
systems with an important excluded-volume contribution to the free energy.

Recently, a new theoretical approach for depletion forces, based on the integral equation
theory of simple liquids, has been developed, which allows the description of effective
interactions in homogeneous and inhomogeneous colloidal suspensions [1, 2]. Basically,
it considers the depletion forces as a particular case of the more general effective interactions
occurring in a liquid mixture when some species are not considered separately. In the
dilute limit this approach contains the well-known Asakura–Oosawa (AO) potential for
mixtures of hard spheres [3], which represents the simplest approximation to evaluate the
imbalance between the osmotic pressures inside and outside the gap between two colloidal
particles approaching each other. Moreover, this theoretical scheme also accounts for general
expressions in concentrated systems and captures in a natural way the energetic contributions
to the depletion forces when the particles (and/or walls) are interacting through a soft potential
(Coulomb, magnetic dipolar, etc).
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The theoretical formulation mentioned above exploits the covariance property of the
Ornstein–Zernike (OZ) equation under contractions of the description. This means, for
example, that if only a part of the system or some species can be observed, which can be due to
the limitations of the experimental techniques, the OZ equation for the visible particles keeps
the same form as the OZ equation for the complete system. The influence of the unobserved
particles on the behaviour of the observed ones is captured in an effective pair interaction
potential between the latter ones.

In the last few years, effective interactions, static properties and dynamic effects in confined
colloidal suspensions have been investigated using quasi-two-dimensional experimental
models [4–7]. These systems can be produced by confining the colloids between two plates or
by trapping the particles at the interface between two media (e.g. air–water). In this paper we
study the entropy-driven forces in perfectly two-dimensional colloidal systems. We believe
that our theoretical results could be corroborated with the experimental models mentioned
above.

It is known that entropic (or excluded-volume) effects can produce crystal arrays when
the colloids are in front of concave walls [8]. Also, the functions of a cell can be affected by
the depletion forces between its membrane (wall) and the macromolecules (colloidal particles)
within [9, 10]. This means that the geometric features play an important role in the physical
properties of such systems. Encouraged by those phenomena, we study the behaviour of the
wall–particle depletion potential when the walls have a concave curvature or a relief pattern.

We extend the theory mentioned above to the case of mixtures of spherical and non-
spherical colloidal particles. This system is relevant because many biological systems are
composed of non-spherical particles, for example a TMV-like virus or fd-bacteriophage.
Depletion forces are also present and play an important role in those systems [11]. We study
a binary mixture of hard discs and hard plates in the infinitely dilute limit.

This paper is organized as follows. In section 2 we present the general formulation for
the effective interaction potentials. In section 3 we study the depletion potentials in dilute and
concentrated systems of hard discs by using the theoretical approach mentioned previously,
and we also compare our results with data obtained from molecular dynamics (MD) computer
simulations. We also investigate the potentials in concentrated binary mixtures of additive
and non-additive hard discs. In section 4 we study the wall–particle depletion potential for a
hard disc in front of a hard wall with a concave curvature or with a relief pattern. In section 5
we present the results for mixtures of hard discs and hard plates. Here, we also discuss wall
effects. The paper ends with a section of conclusions.

2. Effective potentials

2.1. Homogeneous case

The structure of an homogeneous mixture of p spherical species is given by the coupled OZ
equations [12]:

hi j (r) = ci j(r) +
p∑

k=1

nk

∫
V

cik(r
′)hkj (|r − r′|) dr′, (1)

where i, j = 1, . . . , p. The functions hi j (r) and ci j(r) are the total and direct correlation
functions between particles of species i and j , respectively, separated by the distance r . The
coefficient nk is the number density of species k. For the case in which we can only observe
the particles of species i , equation (1) takes the one-component form

hii (r) = ceff
ii (r) + ni

∫
V

ceff
i i (r ′)hii (|r − r′|) dr′, (2)
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where

c̃eff
i i (q) = c̃ii (q) +

p∑
l �=i

nl c̃il(q)c̃li (q)

[1 − nl c̃ll(q)]
+

p∑
l �=i

p∑
m �=i �=l

nl nmc̃im(q)c̃ml(q)c̃li (q)

[1 − nl c̃ll(q)][1 − nmc̃mm(q)]
+ · · · . (3)

The function hii (r) in equation (2) is the same function of equation (1) for the complete system,
or original mixture, which does not change after the contraction because the structure of the
visible particles remains the same, independent of our ability to distinguish between different
components. Equation (3) is written in Fourier space (this feature is indicated by the tilde and
by the functional dependence on the wavenumber q) and is a closed equation. The function
ceff

i i (r) is the so-called effective direct correlation function [1].
The general form of the effective interaction potential between particles of the observed

species is given by the general closure relation for the OZ equation [12]:

βueff
ii (r) =

{
+∞ r < σi

−ceff
ii (r) + hii (r) + Beff

ii (r) − ln[1 + hii (r)] r � σi .
(4)

Here, Beff
ii (r) is the effective bridge function and σi is the diameter of the particles of species i .

In general, the functional form of the bridge function is unknown, but it depends on density so
that in very dilute systems its effects are negligible. In that case we can approach equation (4)
with

βueff
ii (r) =

{
+∞ r < σi

−ceff
ii (r) r � σi .

(5)

Equation (5) is the simplest approximation that we can make for the evaluation of the depletion
potentials and corresponds to the mean spherical approximation (MSA) [12]. As we show in
the next section, this approximation also works very well for concentrated systems. If we put
equation (3) into (5) the effective potential is given by

βueff
ii (r) =




+∞ r < σi

−cii (r) −
p∑

l=1,l �=i

nlF−1

[
c̃il(q)c̃li(q)

1 − nl c̃ll(q)

]
+ · · · r � σi ,

(6)

whereF−1 denotes the inverse Fourier transform. In the infinitely dilute limit of the observable
species (ni → 0), up to linear terms in the number densities of the contracted species,
equation (6) can be written as

βueff
ii (r) =




+∞ r < σi

−
p∑

l �=i

nlF−1{c̃(0)
il (q)c̃(0)

li (q)} + · · · r � σi

−
p∑

l �=i

nl

∫
V

c(0)
il (|r − r′|)c(0)

li (r ′) dr′ + · · · r � σi ,

(7)

where the convolution theorem for Fourier transforms is used and

c(0)
i j (r) =

{
−1 r < σi j = (σi + σ j )/2

0 r � σi j .
(8)

The function c(0)

i j (r) is the first term in an expansion of the form ci j(r) = c(0)

i j (r) + n j c
(1)

i j (r) +
· · · [12]. The integral in equation (7) accounts for the volume Vexc of the region in the gap
between two particles of species i , separated by the distance r , from which the particles of
species l �= i are excluded due to their simultaneous overlap with both particles of species i .
This means that in the infinitely dilute limit the theoretical approach captures the theory of AO
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for the depletion forces. Moreover, equation (7) also allows us to evaluate depletion potentials
in the dilute limit when an analytical result is not possible to obtain, as we shall show in the
next sections.

The evaluation of the effective potential in concentrated systems requires a complete
knowledge of the direct correlation functions of the original mixture. Therefore, when we study
concentrated systems we numerically solve equation (1) by means of a five-parameter version of
the Ng method [13] with Percus–Yevick (PY) or Rogers–Young (RY) closure relations [12, 14].
Proceeding along these lines make sense when the contraction of the description is imposed, for
example, by experimental techniques unable to detect all the components. Then, equations (4)–
(7) allow for an interpretation of the results in terms of models, including the experimentally
invisible species. On the other hand, the approach apparently makes no sense when the goal of
the contraction of the description is to simplify the mathematical problem. Fortunately, this is
not the case. In addition to the whole lot we can learn about depletion forces by just evaluating
ueff

i i (r) in the case in which the complete problem can be solved, we can also find that simple
approximations for ci j(r) and hi j(r) could lead to useful expressions for ueff

ii (r). Equation (7),
for example, does not require the knowledge of ci j(r) and hi j(r) and it still works fine for some
cases in which the contracted particles are really not diluted, as we show in the next sections.

2.2. Inhomogeneous case

The structure of colloidal particles of p spherical species close to a wall is given by the
inhomogeneous OZ equation [12]

hwi (r) = cwi(r) +
p∑

j=1

n j

∫
V

ci j(|r − r′|)hwi (r′) dr′, (9)

with i, j = 1, . . . , p. The functions hwi(r) and cwi (r) are the total and direct correlation
functions between the wall and particles of species i , respectively. They depend on the position
vector r because the wall breaks the homogeneity of the particle distribution. The function
ci j(r) is the same bulk direct correlation function between particles of species i and j appearing
in equation (1). Equation (9) has been used extensively to study the density profile of charged
and/or uncharged colloidal particles in front of charged or uncharged flat walls [15].

In the case in which only particles of species i are observed, equation (9) can be rewritten
as

hwi (r) = ceff
wi (r) + ni

∫
V

ceff
ii (|r − r′|)hwi (r′) dr′ (10)

with

c̃eff
wi (q) = c̃wi (q) +

p∑
l �=i

nl c̃il(q)c̃wl(q)

[1 − nl c̃ll(q)]
+

p∑
l �=i

p∑
m �=i �=l

nl nmc̃il(q)c̃lm(q)c̃wm(q)

[1 − nl c̃ll(q)][1 − nmc̃mm(q)]
+ · · · . (11)

The function ceff
ii (r) in equation (10) is given by (3). The effective interaction potential between

the wall and a particle of species i has the general form [12]

β�eff
wi (r) =

{
+∞ x < σi/2
−ceff

wi (r) + hwi (r) + Beff
wi (r) − ln[1 + hwi (r)] x � σi/2,

(12)

where x is the perpendicular distance from the surface of the wall to the centre of the particle.
Although we only write x < σi/2 and x � σi/2 in our equations, which makes sense only
for flat walls, these conditions have to be read, in general, as the conditions for overlapping
and non-overlapping configurations between the wall and the particle. We assume, as in
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the homogeneous case, that MSA is a good approximation for the effective potential. Then,
equation (12) becomes

β�eff
wi (r) =

{
+∞ x < σi/2
−ceff

wi (r) x � σi/2.
(13)

If we substitute equation (11) into (13), the wall–particle depletion potential takes the form

β�eff
wi (r) =




+∞ x < σi/2

−cwi(r) −
p∑

l �=i

nlF−1

{
c̃il(q)c̃wl(q)

1 − nl c̃ll(q)

}
+ · · · x � σi/2. (14)

This equation has already been used in order to calculate the energetic contributions to the
wall–particle depletion potential when the contracted species and/or walls are charged [2].

In the infinitely dilute limit of particles of species i , up to linear terms in the density of
the unobserved particles, equation (14) takes the form

β�eff
wi (r) =




+∞ x < σi/2

−
p∑

l �=i

nlF−1{c̃(0)
il (q)c̃(0)

wl (q)} + · · · x � σi/2

−
p∑

l �=i

nl

∫
V

c(0)
il (|r − r′|)c(0)

wl (r
′) dr′ + · · · x � σi/2,

(15)

where c(0)
il (r) and c(0)

wi (r) take the values −1 in an overlapping configuration and 0 in a non-
overlapping configuration, as in equation (8). In three-dimensional systems we were able to
employ equation (15) in order to design surfaces of entropic potentials [16]. We show here
some calculations for the two-dimensional case, which refer to lines instead of surfaces of
entropic potential.

2.3. Non-spherical particles

Let us consider a system composed of non-spherical colloidal particles of p different species.
The structure of such a system is given by the orientation-dependent OZ equation [12]

hi j (r12, u1, u2) = ci j(r12, u1, u2) +
p∑

l=1

nl

�

∫
V

∫
�

dr3 du3 cil(r13, u1, u3)hl j (r32, u3, u2), (16)

where i, j = 1, . . . , p. The functions hi j(r12, u1, u2) and ci j(r12, u1, u2) are the total and
direct correlation functions between a particle of species i located at r1 with an orientational
vector u1 and a particle of species j located at r2 with an orientational vector u2, respectively.
The total solid angle is given by �. Here, we restrict ourselves to binary mixtures of spherical
particles (species 1) and non-spherical particles (species 2),so that the orientational coordinates
of species 1 can be integrated throughout the contraction of species 2.

In the first step of the contraction procedure equation (16) can be exactly rewritten as

h11(r12) =
[

c11(r12) +
n2

�

∫
V

∫
�

dr3 du3 c12(r13, u3)c21(r32, u3)

]

+ n1

∫
V

dr4

[
c11(r14) +

n2

�

∫
V

∫
�

dr3 du3 c12(r13, u3)c21(r34, u3)

]
h11(r42)

+

(
n2

�

)2 ∫
V

∫
�

dr3 du3 c12(r13, u3)

∫
V

∫
�

dr4 du4 c22(r34, u3, u4)h21(r42, u4).

(17)
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As in the homogeneous case seen before, further contraction steps lead to

h11(r12) = ceff
11 (r12) + n1

∫
V

dr3 ceff
11 (r13)h11(r32) (18)

with

ceff
11 (r12) = c11(r12) +

n2

�

∫
V

∫
�

dr3 du3 c12(r13, u3)c21(r32, u3) + · · · . (19)

The only difference between equations (3) and (19), apart from the orientational dependence,
is that (3) is written in Fourier space and (19) in real space. Thus, in the case in which we
cannot observe the particles of species 2, the effective interaction potential between observed
particles in their infinitely dilute limit, up to linear terms in n2, is given by

βueff
11 (r12) =




+∞ r12 < σ1

−n2

�

∫
V

∫
�

dr3 du3 c(0)

12 (r13, u3)c
(0)

21 (r32, u3) r12 � σ1,
(20)

where c(0)

12 (r13, u3) and c(0)

21 (r32, u3) get the values −1 in an overlapping configuration and 0
in a non-overlapping configuration.

Following the same lines, the wall–particle depletion potential in the case of binary
mixtures of hard spheres (species 1) and hard non-spherical particles (species 2) in front
of a hard wall is found to be

β�eff
w1(r1) =




+∞ x < σ1/2

−n2

�

∫
V

∫
�

dr3 du3 c(0)

12 (r13, u3)c
(0)

w2(r3, u3) x � σ1/2,
(21)

in the infinitely dilute limit of species 1, up to linear terms in n2. The variable x and the
functions c(0)

12 (r13, u3) and c(0)

w2(r3, u3) have the same meaning as in equation (15).
We would like to point out that the contraction of the description provides a general and

efficient method to construct effective pair potentials in colloidal suspensions. In the following
sections, we use the equations previously obtained in order to evaluate the depletion potentials
in homogeneous and inhomogeneous binary mixtures of hard particles in two-dimensional
systems.

3. Mixtures of hard discs

In the infinitely dilute limit, the depletion potential between discs of species i , immersed
in a suspension of discs j ( �=i), can be obtained from the evaluation of equation (7), also
using the AO procedure [3]. However, for more complex geometries AO becomes intractable.
Nevertheless, equation (7) provides a numerical scheme which can be easily implemented in
every case. By constructing a spatial grid around the overlapping region, we can check the
simultaneous overlapping condition at every point of the grid. If the condition is fulfilled we
add a volume element to the integral in equation (7). In the opposite case, we pass on to the
next point of the grid.

Let us consider an asymmetric binary mixture of hard discs of diameters σ1 and σ2 (<σ1)

and surface fractions ϕ1 = πn1σ
2
1 /4 and ϕ2 = πn2σ

2
2 /4. Then, in the dilute limit, the depletion

potential between two large discs takes the form

βueff
11 (r) =

{
+∞ r < σ1

−n2F−1[c̃(0)
12 (q)c̃(0)

21 (q)] r � σ1.
(22)

The direct correlation function c(0)

12 (r) describes the overlapping and non-overlapping
conditions between particles of species 1 and 2 (see equation (8)). In two dimensions the
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Fourier transform of a function f (r) is given by the Fourier–Bessel (FB) transform. Then, the
FB transform of c(0)

12 (r) is

c̃(0)
12 (q) = 2πσ12

J1(qσ12)

q
, (23)

where Jn(z) is the Bessel function of the first kind of order n. Then, by putting equation (23)
into (22), the depletion potential between two large discs takes the form

βueff
11 (r) =




+∞ r < σ1

−2πσ 2
12n2

∫ ∞

0

J0(qr)J 2
1 (qσ12)

q
dq r � σ1.

(24)

The AO procedure, the integral in equation (7) and the numerical evaluation of equation (24)
all lead to

βueff
11 (r) = −2ϕ2

π
(1 + η)2

[
cos−1

(
1

1 + η

r

σ2

)
−
(

1

1 + η

r

σ2

)√
1 −

(
1

1 + η

r

σ2

)2
]

(25)

for σ1 � r � σ1 + σ2 and 0 for larger distances, and η = σ1/σ2. This potential is always
attractive and it has an absolute minimum at contact of amplitude

βueff
11 (σ +

1 ) = −2ϕ2

π
(1 + η)2

[
cos−1

(
η

1 + η

)
−
(

η

1 + η

)√
1 −

(
η

1 + η

)2
]
. (26)

In practical situations, it should be better to provide simpler expressions for the potential
at contact. In that case, equation (26) can be approximately written as βueff

11 (σ +
1 ) �

−(2ϕ2/π)(1.885 62η1/2 + 0.659 96η−1/2 + O(η−3/2)). This is a very good approximation
for η � 2.

In ternary mixtures, the dilute limit of the depletion potential between two hard discs of
species 1 and 2, of diameters σ1 and σ2 (<σ1), immersed in a bath of hard discs of diameter
σ3 (<σ2), is given by the contraction of the third species (not shown here). With n1 → 0 and
n2 → 0, up to linear terms in n3, this leads to

βueff
12 (r) = −ϕ3

π
(1 + η1)

2

[
cos−1

(
r1

1 + η1

)
−
(

r1

1 + η1

)√
1 −

(
r1

1 + η1

)2
]

− ϕ3

π
(1 + η2)

2

[
cos−1

(
r2

1 + η2

)
−
(

r2

1 + η2

)√
1 −

(
r2

1 + η2

)2
]
, (27)

for σ12 � r � σ12 + σ3 and 0 for larger distances. Here, ϕ3 = πn3σ
2
3 /4, ηi = σi/σ3,

r1 = (σ3/4r)[4(r/σ3)
2 + (1 + η1)

2 − (1 + η2)
2], and r2 = 2r/σ3 − r1. This potential is also

purely attractive with an absolute minimum at contact. As expected, in the case for σ1 = σ2,
equation (27) reduces to (25). In the case that σ1 → ∞, equation (27) corresponds to the wall–
particle depletion potential in a binary mixture in front of a flat wall [1]. We can also obtain
analytical expressions for more sophisticated systems by simply evaluating equation (7) with
the appropriate overlapping conditions. However, in this section we do not report further in that
direction. We look instead at concentration effects and at the accuracy of our approximations.
We will come back to the dilute limit when we study wall and geometry effects.

In order to check the accuracy of the theory presented in the previous section, we compare
the effective potential obtained from equation (6) with MD computer simulations for some
binary mixtures of hard discs of diameters σ1 and σ2 (<σ1) in the infinitely dilute limit of
species 1 (ϕ1 → 0). The simulated entropic forces were obtained by summing the linear
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Figure 1. The figure shows the simulated depletion force, scaled with kBT/σ2, between particles
of species 1 in two binary mixtures of hard discs with σ1/σ2 = 5, ϕ1 → 0 and ϕ2 = 0.2 and 0.4.
The inset also shows the simulated depletion force for the same systems but with σ1/σ2 = 10. The
curve is just a guide for the eye.

moment exchange over all collisions between all the particles of species 2 and two fixed
particles of species 1 separated by a distance r . The depletion potential results from the
integration of the force. The computer simulations were performed in a rectangular simulation
box with standard periodic boundary conditions, using the Verlet algorithm [17]. The number
of particles used in this work for σ1/σ2 = 5 was N1 = 2 and N2 = 186 (460) for ϕ2 = 0.2
(0.4). For σ1/σ2 = 10 we used N1 = 2 and N2 = 408 (830) for ϕ2 = 0.2 (0.4). The length
L of the simulation box was adjusted to give the prescribed density of the system according
to the relation L2 = N2/n2. At the beginning of the simulation, the two larger hard discs
were placed at the centre of the simulation box, separated by a distance r , remaining fixed
in that position. The smaller hard discs were then randomly placed in the simulation box
in a non-overlapping configuration and allowed to move according to the Verlet algorithm,
until equilibrium was reached. Further configurations were generated to calculate the average
linear moment exchange. The same procedure was repeated for different values of r in order
to achieve the average force over the whole range of significant separations. The average
depletion potential results from the integration of the average force. The length L was always
large enough for the smaller discs to get their bulk structure on the border of the simulation
box. Therefore, the larger particles at the centre of one cell do not sense the other particles of
the same species in the other cells.

In figure 1 we can see the simulated effective force between two large hard discs immersed
in a bath of small hard discs with surface fractions ϕ2 = 0.2 and 0.4 and size ratios η = 5.
The case with η = 10 is shown in the inset. The two large discs are placed from the left to the
right. The figure shows the amplitude of the force acting on the right disc. A negative value
means that this particle feels a force in the direction of the other particle, i.e. an attraction. A
positive value means that the particles are repelling each other. We can observe an attractive
force when the discs are separated by small distances (σ1 < r < σ1 + σ2). This is due to the
depletion effect at the AO level. Instead, when they are separated by larger distances there is
a repulsive barrier. Basically, this effect is due to the large concentration gradients of small
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Figure 2. The figure shows the depletion potential ueff
11 (r), scaled with kBT , between particles

of species 1 in two binary mixtures of hard discs with σ1/σ2 = 5, ϕ1 → 0 and ϕ2 = 0.2 and
0.4. The circles represent the results of the MD simulations. The full curves were obtained from
the theoretical approach by solving the OZ equation for the binary mixture with the PY closure
relation. The broken curves were obtained with the RY closure relation. The inset shows the
depletion potential for the same systems but with σ1/σ2 = 10. The broken curves correspond to
the AO approximation and the dotted lines stand for the PMF βw11(r) = − ln g11(r).

discs inside and outside the gap between large particles. Both the attractive and repulsive
forces mentioned above become stronger with the increasing density of small discs. These
features possessed by the effective forces give rise to interesting effects in the behaviour of the
depletion potential between large discs, as we see below.

In figure 2 we present the depletion potential for the systems shown in figure 1; ϕ2 = 0.2
and 0.4 and η = 5. The circles correspond to the MD simulations, and the full and broken
lines to the theoretical approach. Here, the correlation functions of the original mixtures
were calculated, both with the PY closure relation (full curves) and with the RY closure
relation (broken curves). As expected from the results for the force and from the analytical
expression for the dilute limit (equation (25)), the attraction at contact becomes deeper as the
concentration of small discs increases. At the front of the contact attractive well a repulsive
barrier is developed and the interaction becomes more long-ranged, oscillating around 0 for
larger distances. This particular behaviour is due to the correlations between small particles,
which are not included in the dilute limit, but they are taken into account in the PY and
RY approaches. The theory captures all concentration effects with quantitative accuracy.
However, we can appreciate that the solution of the OZ equation with the RY closure relation
overestimates the amplitude of the potential well at contact, but PY agrees very well with the
simulation data. The inset shows the entropic potential for the system ϕ2 = 0.2 and 0.4 and
η = 10. The potential presents basically the same behaviour as the potential with η = 5, but
its main features become more pronounced with increasing asymmetry in size, as expected
from equation (25). The potential of mean force (PMF), βw11(r) = − ln g11(r), quantitatively
reproduces the potential at large distances. At contact, however, it underestimates the depletion
potential as much as the AO approximation does. In the following figures the OZ equation for
the original mixture is solved with the PY closure relation.
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Figure 3. The figure shows the depletion potential ueff
11 (r), scaled with kBT , between particles of

species 1 in three binary mixtures of hard discs with σ1/σ2 = 5, ϕ1 → 0 and ϕ2 = 0.5, 0.6 and
0.7. The displayed results were obtained from the theoretical approach by solving the OZ equation
for the binary mixture with the PY closure relation.

In figure 3 we show the depletion potential between large hard discs immersed in a
suspension of small hard discs, in the infinitely dilute limit of the first ones (ϕ1 → 0) and
for large surface fractions of the latter, with a size ratio η = 5. In this case we observe
interesting new effects. For large surface fractions of small hard discs (ϕ2 > 0.4) the position
of the first repulsive barrier shifts to smaller distances, until it reaches a new stable position
at r ≈ σ1 + σ2/2. Simultaneously, a new attractive well emerges at r ≈ σ1 + σ2, where the
repulsive barrier was located before. Close to the phase transition (ϕ2 = 0.7) the potential
presents strong oscillations around zero at larger distances. This property is characteristic for
any system close to the freezing transition, since the correlations between particles become
more and more long-ranged when the system approaches the critical point. This behaviour is
well captured by the pair depletion potential.

Now, we analyse the effects of increasing the concentration of large discs. In figure 4 we
show the depletion potential for a series of systems with ϕ2 = 0.3 and η = 5, but with different
values of ϕ1. The potential well at contact becomes deeper with increasing density of large
discs. However, this effect is weaker than the effect of increasing the concentration of species
2 shown in figure 3, at least for the present values of ϕ1 and ϕ2. Also the position of the first
barrier shifts to smaller distances and the amplitude of successive wells and barriers increases
with ϕ1.

A mixture of non-additive hard discs is defined by a non-additive diameter σ nadd
i j =

σi j + �i j , where �i j is known as the non-additive parameter. This model has been used
as a reference system for mixtures of colloids and polymers, and for mixtures of charged and
uncharged particles. Its phase behaviour has been extensively studied as well [18, 19]. Here,
we consider binary mixtures of large additive hard discs (�11 = �12 = 0) and small non-
additive hard discs (�22 = � �= 0) in the infinitely dilute limit of the first ones (ϕ1 → 0),
with a surface fraction ϕ2 = 0.2 of the latter, and a size ratio η = 5. In figure 5 we show
the depletion potential between additive large discs for different values of �. For � = 0 we
recover the additive case already shown in figure 2. When � increases the attractive well at
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Figure 4. The figure shows the depletion potential ueff
11 (r), scaled with kBT , between particles of

species 1 in six binary mixtures of hard discs with σ1/σ2 = 5, ϕ1 = 0.05, 0.1, 0.15, 0.2, 0.25 and
0.3, and ϕ2 = 0.3. The displayed results were obtained from the theoretical approach by solving
the OZ equation for the binary mixture with the PY closure relation.

Figure 5. The figure shows the depletion potential ueff
11 (r), scaled with kBT , between particles of

species 1 in four binary mixtures of non-additive hard discs with σ1/σ2 = 5, ϕ1 → 0, ϕ2 = 0.2,
�11 = �12 = 0 and �22/σ2 = �/σ2 = 0, 0.25, 0.5 and 0.75. The non-additive diameter is
given by σ nadd

i j = σi j + �i j . The displayed results were obtained from the theoretical approach by
solving the OZ equation for the binary mixture with the PY closure relation.

contact disappears, being replaced by a growing repulsive barrier, and the range of the potential
increases as well. This result is really amazing, since the same effects are observed when there
are energetic contributions to the effective potentials [1, 2]. The non-additive model may allow
for the qualitative features of effective potentials in mixtures of hard and soft particles.
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Figure 6. The figure shows the depletion potential �eff
w1(x), scaled with kBT , between particles

of species 1 and a two-dimensional hard wall with a concave curvature of radius R in four binary
mixtures of hard discs with σ1/σ2 = 5, ϕ1 → 0, up to linear terms in ϕ2, and R/σ2 = 5, 10, 100
and ∞. The displayed results were obtained from the dilute limit of the theoretical approach. The
circles correspond to the case of a flat wall.

4. Wall–particle depletion potentials

We now investigate wall effects. We first consider a binary mixture of large and small discs
with diameters σ1 and σ2 (<σ1) in front of a flat hard wall. The wall–particle depletion potential
between the particles of species 1 and the wall in the dilute limit is given by the integration of
equation (15) with p = 2. It can also be obtained from the limit σ1 → ∞ of equation (27).
However, the latter is only useful in the case of flat walls and we shall be focusing on walls
with a concave curvature or with a relief pattern. Therefore, in the following we will always
work with equation (15). Then, for a flat wall the wall–particle depletion potential is given by

β�eff
w1(x) = − ϕ2

2π
(1 + η)2

[
π + 2 tan−1

(
1 − 2x/σ2√

(1 + η)2 − (1 − 2x/σ2)2

)]

− ϕ2

π
(1 − 2x/σ2)

√
(1 + η)2 − (1 − 2x/σ2)2 (28)

for σ1/2 � x � σ1/2 + σ2 and 0 for larger distances. Here, x is the perpendicular distance
from the wall to the centre of the disc of species 1. The depletion potential in equation (28)
is only attractive, with an absolute minimum at contact. The wall–particle potential at contact
in the inhomogeneous case is more attractive than the potential at contact in the homogeneous
case (see equation (27)). This only means that the excluded volume close to a flat wall is larger
than that near any other particle of finite diameter.

Now, we consider an asymmetric binary mixture of hard discs in front of a concave hard
wall with a radius of curvature R, a surface fraction of small discs ϕ2 = 0.3 and a size ratio
η = 5. We evaluate the potential in the dilute limit by integrating numerically equation (15)
with the corresponding overlapping conditions for c(0)

12 (r) and c(0)

w2(r). In figure 6 we show the
wall–particle depletion potential for four values of R. The full curves correspond to R = 5σ2,
the broken curves to R = 10σ2, the dotted curves to R = 100σ2 and the full circles to R → ∞
or equation (28). When the curvature R−1 increases the wall–particle depletion potential at



Depletion forces in two-dimensional colloidal mixtures S3405

Figure 7. The figure shows the depletion potential �eff
w1(x, y) at contact, scaled with kBT , between

particles of species 1 and a two-dimensional hard wall with a step edge of height h = 10σ2, located
at x = 0, in a binary mixture of hard discs with σ1/σ2 = 5 and ϕ1 → 0, up to linear terms in ϕ2.
The displayed results were obtained from the dilute limit of the theoretical approach. The curve
represents a contact scanning of the wall, beginning on the upper level (x < 0) and ending on the
lower level (x > 0) of the step. The contact value for a flat wall is recovered far away from the
step edge.

contact becomes deeper; the larger the curvature the larger the excluded volume. The case of
a flat wall is reached in practice when R � 100σ2.

Let us consider now a hard wall with a step edge of height h = 10σ2, located at x = 0,
with the same parameters of the suspension used in the previous case. Here, the variable x has
a meaning which differs from the one previously used in this paper. The two-dimensional wall
lies along the x axis and the step edge along the y axis. The upper level of the step is in x < 0
and the lower level in x > 0. In the dilute limit the wall–particle depletion potential is given
by the numerical integration of equation (15), with the appropriate overlapping conditions for
c(0)

12 (r) and c(0)

w2(r). Figure 7 only shows the contact values of β�eff
w1(x, y). Thus, the line

represents a contact scanning of the wall, beginning on the upper level and ending on the lower
level of the step. Closing the edge from the left, the particle first feels a force in the opposite
direction, parallel to the wall, and a weaker attraction perpendicular to the wall. Those features
arise from the collisions with the small discs in front of the lower level of the step. If the particle
is able to cross this barrier, it falls in an attractive well located on the concave edge of the step.
Beyond this well the particle only feels a flat wall, as it is always the case far away from the
step, in both directions. Some of these predictions have been already observed in the lab [20].
It has also been shown that the attractive well at the concave edge could lead to the selective
deposition of particles [8, 21].

In figure 8 we show the contact value of the dilute limit of the wall–particle depletion
potential for the same binary mixture of figure 7, but now in front of a hard wall with a barrier
of height h = 10σ2 and thickness l = 2σ2, located at x = 0. The top of the barrier is in
−σ2 < x < σ2. The curve represents therefore a contact scanning of the wall, beginning
on one side of the barrier (x < −σ2), climbing up, going down and ending on the other side
(x > σ2). Most of the features of the potential can be understood as a superposition of two
opposite lying step edges. However, at the centre of the top of the barrier a second attractive
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Figure 8. The figure shows the depletion potential �eff
w1(x, y) at contact, scaled with kBT , between

particles of species 1 and a two-dimensional hard wall with a barrier of height h = 10σ2 and
thickness l = 2σ2, located at x = 0, in a binary mixture of hard discs with σ1/σ2 = 5 and ϕ1 → 0,
up to linear terms in ϕ2. The displayed results were obtained from the dilute limit of the theoretical
approach. The curve represents a contact scanning of the wall, beginning on one side of the barrier
(x < −l/2), climbing up, going down and ending on the other side (x > l/2). The contact value
for a flat wall is recovered far away from the barrier.

well is developed, which could trap the particle in both directions, parallel and perpendicular
to the wall. This could also lead to selective adsorption and has already been used in the
synthesis of crystal arrays [21, 22]. We expect that, when l � σ1, the potential well at the top
of the barrier reaches its minimum value β�eff

w1(x = 0, y = h) = β�eff
w1(|x | � l/2, y = 0).

The cases investigated above show that the geometry plays an important role in the
behaviour of the wall–particle potential. Equation (15) allows us to design lots of potential
profiles by just choosing the geometric features of the wall (or substrate) and/or the parameters
of the suspension. Basically, this means that we can handle the entropy of the system. This
could be of technological relevance.

5. Binary mixtures of hard discs and hard plates

As mentioned in the introduction many biological systems are composed of non-spherical
particles, and depletion forces are also playing an important role in those systems. Encouraged
by this fact, we now study mixtures of spherical and non-spherical particles. Such systems
have captured the attention of several authors in the past [11, 23]. In the three-dimensional case
the depletion potential between spheres immersed in a bath of hard sphero-cylinders displays
a quite large contact value compared to kBT . One would expect on this basis to observe
a segregation in this kind of mixture. However, such a phase separation has not yet been
identified experimentally. That is an example of the open and interesting questions related to
such systems.

Several authors have modelled this kind of suspension as two spherical particles (infinitely
dilute limit of these species) of diameter σ1 immersed in a suspension of sphero-cylinders of
length L and thickness σ2, with σ1 � L and L/σ2 � 1. The evaluation of the excluded
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Figure 9. The figure shows the depletion potential ueff
11 (r), scaled with kBT , between particles of

species 1 in three binary mixtures of hard discs (species 1) and hard plates (species 2) of thickness
σ2 and length L = 5σ2, with σ1/σ2 = 10 and ϕ1 → 0, up to linear terms in ϕ2. The displayed
results were obtained from the dilute limit of the theoretical approach. Our plates are the two-
dimensional equivalent of the sphero-cylinders. The inset shows the depletion potential �eff

w1(x),
scaled with kBT , between particles of species 1 and a two-dimensional flat hard wall in the same
three binary mixtures of hard discs (species 1) and hard plates (species 2). The displayed results
were also obtained from the dilute limit of the theoretical approach.

volume by using geometrical arguments becomes a tedious problem. Equation (20) allows for
a straightforward calculation of the same quantity. We now apply this equation in order to
calculate the dilute limit of the depletion potential between hard discs (species 1) of diameter
σ1 immersed in a suspension of hard plates (species 2) of length L and thickness σ2. Our plates
are the two-dimensional equivalent of sphero-cylinders. This means they are rectangular plates
of length L and thickness σ2 (<L) ending with half-discs of diameter σ2. Their surface fraction
is then given by ϕ2 = (πn2σ

2
2 /4)(4L/πσ2 +1). We also take L +σ2 � σ1 and values of ϕ2 well

below the critical density in which two rotating plates partially overlap. When L = 0 the case
of a binary mixture of hard discs is recovered. Since we are working with two-dimensional
systems we have to take � = 2π in our equations.

Figure 9 shows the dilute limit of the depletion potential between hard discs of diameter
σ1 = 10σ2 for three different values of ϕ2 and L = 5σ2. The depth of the potential well
at contact increases with the concentration of plates. βueff

11 (r) becomes zero when a plate is
positioned along the gap between the discs, but not when the plate is perpendicular to the line
connecting the centres of the discs. In these systems the potential at contact is more attractive
than in the case of asymmetric binary mixtures of hard discs with the same concentration
of plates and small discs. The reason for that is related to the fact that the plates possess
an additional rotational degree of freedom. Therefore, their entropy is larger than that of
small discs.

Figure 10 shows the dilute limit of the depletion potential between hard discs for different
lengths of plates. The number partial density of plates has the same value n2σ

2
2 = 0.05 in

all systems, but ϕ2 changes with L. In addition, σ1 = 10σ2. The behaviour of the potential
is basically the same as in figure 9. However, it is more attractive at contact and more long-
ranged when L increases. Also the dilute limit of the wall–particle depletion potential for
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Figure 10. The figure shows the depletion potential ueff
11 (r), scaled with kBT , between particles of

species 1 in three binary mixtures of hard discs (species 1) and hard plates (species 2) of thickness
σ2 and lengths L/σ2 = 5, 7 and 9, with σ1/σ2 = 10 and ϕ1 → 0, up to linear terms in ϕ2. The
displayed results were obtained from the dilute limit of the theoretical approach. Our plates are the
two-dimensional equivalent of the sphero-cylinders.

a hard disc in front of a flat hard wall in a suspension of hard plates is obtained from the
numerical evaluation of equation (21). The inset in figure 9 shows this quantity for different
values of the concentration of plates. The other parameters are as in the main body of figure 9.
The potential at contact becomes deeper with increasing ϕ2. The potential well at contact is
also deeper than in the homogeneous case. Figures 9 and 10 shall give us a better idea of the
applicability of the method.

6. Conclusions

Depletion forces can be understood as a special case of the more general effective interactions
arising from the contraction of the description of liquid mixtures. This idea has been
implemented within the framework of the integral equation theory of simple liquids [1, 2].
In this paper we apply this theoretical approach in order to evaluate depletion forces in
two-dimensional systems. We study dilute and concentrated binary mixtures of hard discs,
concentrated binary mixtures of non-additive hard discs and dilute ternary mixtures of hard
discs. We also try using inhomogeneous systems, such as dilute binary mixtures of hard discs in
front of a hard flat wall,or in front of a hard wall with a concave curvature or with a relief pattern.
When working with non-spherical particles, we study dilute binary mixtures of hard discs and
hard plates in the bulk and in front of a hard flat wall. In this way, we show that the theory is
able to capture concentration and geometrical effects in a natural way. Our results show that
the AO [3] approximation is recovered from the dilute limit of our equations, which represents
a simple and efficient method to calculate excluded volumes in every geometrical array.

We also calculate the depletion forces by means of MD simulations. The comparison of
the simulation data with theoretical results yields an excellent quantitative agreement when
the PY approximation is used to calculate the structure of the mixture and the MSA is taken
for the effective interaction potential. By working further with these approximations we show
that the mixtures of non-additive hard discs may be useful as models for mixtures of hard
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and soft particles. The features shown in the depletion forces are very similar to the results
obtained from the energetic contributions to the depletion forces in mixtures of charged and
uncharged particles [1, 2]. In particular, a salient point is the growth of a repulsive barrier
at contact. The systems of additive hard particles behave like the three-dimensional systems.
They display a depletion potential well at contact, which is followed, in the case of concentrated
systems, by a repulsive barrier. At larger distances, the depletion potential decays, oscillating
around zero. More interesting are the results for the wall–particle depletion potential. Our
equations allow for the design of potential profiles by just choosing the geometric features of
the wall, and/or the parameters of the suspension. Basically, this means that we can handle the
entropy of the system. This result could be of technological relevance. On the other hand, the
rotational contribution to the entropy of systems composed of non-spherical particles leads to
an increment in the amplitude of the depletion attractions.

In our theoretical scheme, depletion forces between two large particles of species 1,
immersed in a bath of small particles of species 2, are described as the effective interaction
between particles of species 1, mediated by the particles of species 2. Therefore, depletion
forces are already a kind of interaction with three-body effects. However, by evaluating the
depletion potential we always suppose pairwise additivity of all involved interactions, even the
depletion forces themselves. The implementation of triplet interactions in the treatment of the
depletion effects constitutes an exciting remaining task.
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